Processing math: 100%

অধিবৃত্ত

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ২য় পত্র | - | NCTB BOOK
103
103

অধিবৃত্ত (Parabola) হলো কনিকের আরেকটি বিশেষ ধরনের আকার, যা একটি বাঁকা রেখা হিসেবে পরিচিত। এটি এমন একটি গাণিতিক আকার, যার প্রতিটি বিন্দু একটি নির্দিষ্ট ফোকাল পয়েন্ট এবং একটি নির্দিষ্ট রেখা (ডিরেকট্রিক্ট) থেকে সমান দূরত্বে অবস্থান করে। অধিবৃত্তের গঠন এবং এর বৈশিষ্ট্যগুলোর একটি বিস্তারিত আলোচনা এখানে করা হলো।

অধিবৃত্তের গঠন

অধিবৃত্তের প্রধান বৈশিষ্ট্য হলো, এটি একটি বাঁকা রেখা যা একটি ফোকাল পয়েন্ট এবং একটি ডিরেকট্রিক্ট (নির্দেশক রেখা) এর সাথে সম্পর্কিত। একটি অধিবৃত্তের প্রতিটি বিন্দু ফোকাল পয়েন্ট এবং ডিরেকট্রিক্টের সাথে সমান দূরত্বে থাকে। অধিবৃত্তটি একক শাখায় বিভক্ত থাকে এবং এটি একটি "U" আকৃতির বক্ররেখা তৈরি করে।

অধিবৃত্তের সমীকরণ

অধিবৃত্তের সাধারণ সমীকরণ হলো:

y2=4ax

এখানে:

  • a হলো ফোকাল পয়েন্টের থেকে অধিবৃত্তের শাখার দূরত্বের অর্ধদৈর্ঘ্য।
  • x এবং y হলো অধিবৃত্তের একটি পয়েন্টের স্থানাঙ্ক।

এছাড়া, যদি অধিবৃত্তটি উল্লম্বভাবে বিস্তৃত থাকে (অথবা y-অক্ষ বরাবর), তবে এর সমীকরণ হবে:

x2=4ay

এখানে a হলো ফোকাল পয়েন্টের থেকে ডিরেকট্রিক্টের দূরত্ব।

অধিবৃত্তের বৈশিষ্ট্য

  1. ফোকাল পয়েন্ট (Focus): অধিবৃত্তের একটি ফোকাল পয়েন্ট থাকে, যা এই আকারের কেন্দ্র। এটি মূলত একটি গুরুত্বপূর্ণ বিন্দু, যেখান থেকে অধিবৃত্তের প্রতিটি বিন্দু সমান দূরত্বে থাকে।
  2. ডিরেকট্রিক্ট (Directrix): এটি একটি রেখা যা অধিবৃত্তের শাখার বিপরীত দিকে অবস্থিত এবং এটি একটি নির্দিষ্ট দূরত্বে ফোকাল পয়েন্টের সম্পর্কিত। অধিবৃত্তের প্রতিটি বিন্দু ফোকাল পয়েন্ট এবং ডিরেকট্রিক্টের কাছাকাছি একটি নির্দিষ্ট দূরত্বে অবস্থান করে।
  3. অক্ষ (Axis): অধিবৃত্তের একটি অক্ষ থাকে, যা ফোকাল পয়েন্ট এবং ডিরেকট্রিক্টের মাঝে সোজা রেখা হিসেবে কাজ করে। এটি সাধারণত x-অক্ষ বা y-অক্ষ হতে পারে।
  4. কেন্দ্র (Vertex): অধিবৃত্তের শাখা যেখানে সবচেয়ে কাছাকাছি থাকে, সেটি কেন্দ্র বা শীর্ষ (vertex) হিসেবে পরিচিত।
  5. বিকৃতি (Latus Rectum): এটি একটি রেখা যা ফোকাল পয়েন্টের উপর দিয়ে চলে এবং অধিবৃত্তের শাখার প্রতি থাকে। এটি একটি গুরুত্বপূর্ণ গাণিতিক উপাদান, যার দৈর্ঘ্য 4a হয়।

অধিবৃত্তের ব্যবহার

অধিবৃত্তের বিভিন্ন বাস্তব জীবনে ব্যবহার রয়েছে, বিশেষ করে ইঞ্জিনিয়ারিং, ফিজিক্স এবং বিভিন্ন প্রযুক্তিগত ক্ষেত্রে:

  1. অপটিক্স: অধিবৃত্তকে বিভিন্ন অপটিক্যাল ডিভাইসে ব্যবহৃত হয়, যেমন টেলিস্কোপ, মাইক্রোস্কোপ, এবং ফোকাসিং ডিভাইসগুলিতে। অধিবৃত্তের ফোকাল পয়েন্টে আলো সঞ্চালন করা যায়।
  2. গোলমাল ও রাডার প্রযুক্তি: অধিবৃত্তের আকারে গোলমাল বা সংকেত বিচ্ছিন্ন করা যায়। যেমন, কিছু স্যাটেলাইট সিগন্যাল বা রাডারের ব্যবহারে অধিবৃত্তের আকারের রেফ্লেক্টর ব্যবহার করা হয়।
  3. বিকল্প ইঞ্জিনিয়ারিং: অধিবৃত্ত আকারে ডিজাইন করা স্লাইডিং ডোর, ব্রিজ আর্ক, এবং অন্যান্য কাঠামোগত অংশ তৈরি করা হয়।
  4. মাধ্যম ও চলন: ক্রীড়ায় যেমন বল ফেলার বা প্রক্ষেপণের সময় অধিবৃত্তীয় কক্ষপথে বস্তু চলতে পারে, বিশেষত গুলি বা মিসাইল ছোঁড়ার ক্ষেত্রে।

এভাবেই অধিবৃত্তের আকার এবং এর বৈশিষ্ট্য গাণিতিক এবং বাস্তব জীবনে গুরুত্বপূর্ণ ভূমিকা পালন করে।

Promotion